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Abstract 

A new relationship between products of two structure 
factors with coefficients calculated as the Fourier 
transform of a modified Patterson function is presented. 
The relation is alternatively expressed in terms of triple 
phase invariants and also a new weighted form of 
Sayre's equation [Sayre (1952). Acta Cryst. 5, 60-65] 
emerges as a special case. The advantages of the new 
equations with respect to Sayre's equation are dis- 
cussed and, with simple one-dimensional models, 
examples of direct calculation of the cosines of 
triple-phase invariants are included. 

Introduction 

Several formulae for estimating the cosines of triple 
phase invariants have been derived in the past, some on 
the basis of probability theory and others algebraically, 
but none is completely reliable. In an attempt to 
improve such estimates, the present work introduces a 
new equation which, in its basic form, is homogeneous 
in products of two E's  with phase-independent 
coefficients which are calculated from the Patterson 
function. This equation gives rise to a system of linear 
equations for the cosines of triple phase invariants and 
it is shown by solving for the cosines in some simple 
examples that the rank of the system is greater than the 
rank of the corresponding system of Sayre equations. 

A new phase relationship 

The normalized structure factor E(h) for the reciprocal 
vector h is defined in the usual way: 

E ( h ) =  z~ ~ z,, exp(En/h.r , ) ,  
~z=l ~z=l 

(1) 

where r.  is the position vector of the pth atom, z.  is its 
atomic number and N is the number of atoms in the 
unit cell. The product of two E's with reciprocal vectors 

0567-7394/81/040548-05501.00 

h I + H a n d  h 2 - -  H is 

E(h I + H) E(h 2 -- H) = z~ ~ 
~=1 ~u,v= 1 

Zl~ Z v 

x exp [2zci(h 1 . r,~ + h 2 . r ) ]  

x exp [2n /H . ( r , - -  rv)]. (2) 

Let us assume that there exists a set of coefficients 
X(H) such that 

Z X(H) expI2n/H. (r . - -  rv)] = 2, (3) 
H 

for p, v = 1, 2, ..., N, where 2 is a constant. That is, the 
sum in (3) is a constant for all interatomic vectors but 
no other special constraints are imposed. Then, 
multiplying both sides of (2) by X(H) and summing 
over H, it follows that 

~ X(H) E(h~ + H) E(h 2 -- H) = 2E(h~) E(h2). (4) 
H 

This is the main equation of the present work and 
obviously its usefulness depends upon whether it is 
possible in practice to obtain a proper set of coefficients 
X(H). The method for calculating the X(H) suggested 
by (3) is to modify the Patterson function so that its 
values at all interatomic vectors are equalized, the 
X(H) then being obtained as the Fourier coefficients of 
the modified Patterson. 

For equal-atom structures with no superposition of 
interatomic vectors, it is only necessary to modify the 
Patterson at the origin. Karle & Hauptman (1957) 
obtained for this case an equation similar to (4) but 
with a term E(h 1 + h2) added to the left-hand side. In 
terms of the present, more general, algebra, the 
equation of Karle & Hauptman corresponds to having 
X(H) = IE(H)I 2 -  1 and the extra term compensates 
for the fact that the summation for/z = v in (3) is then 
zero. Alternatively, putting X ( H ) =  IE(H)I 2 -  1 + 1IN 
brings the Patterson at the origin to single-peak height 
and satisfies both (3) and (4). This suggests a general 
alternative way for calculating the X(H): by subtract- 
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ing from IE(H) I 2 the transform of all multiple peaks to 
bring them to single-peak level. 

As shown above, for (4) to be true, it is necessary 
that the X(H) satisfy (3); but this is not sufficient to 
ensure that (4) provides useful relationships between 
E's. For instance, if the Patterson map is modified to 
give a constant level everywhere, then (4) becomes 
trivial [X(0) = 2, X(H) = 0 for H :/: 0] because all 
structural information is lost. It would seem desirable 
that the X(H), as well as satisfying (3), carry as much 
as possible of the structural information in the 
Patterson function for points which are not inter- 
atomic vectors. 

As h~ and h 2 range over some set of reciprocal 
vectors, (4) gives rise to a set of linear equations with 
exp[i(~Ph, + ~P"2)] as unknowns, the phases ¢h being 
defined by E(h) = I E(h)l exp (iCh). The coefficients of 
these equations are functions only of the IEl's and, 
accordingly, if a system of such equations had a unique 
solution, we should expect the solution to be origin and 
enantiomorph independent. To recast (4) in terms of 
unknowns which have these properties, multiply both 
sides by E(h3), where 

h I + h 2 + h 3 : 0 ( 5 )  

and take the real part. Then 

X(H)IE(h~ + H) E(h 2 -- H) E(h3)l 
H 

× cos (~Ph, + .  + ~ - .  + ~,)  

= 21E(h~) E(h2) E(h3)l cos (~ph, + ~ + ~.). (6) 

On the other hand, if in (4) we put hi = 0 and h 2 = h, 
we get 

~. X(H) E(H) E(h- H) = ,;I.E(0) E(h), (9) 
H 

which is a weighted form of the Sayre-Hughes 
equation, valid even when the atoms are not equal, 
provided that the proper X(H) can be determined. 

Thus there is a formal similarity between (7) and (8) 
on the one hand and (3) and (4) on the other; but the 
requirement of equal peaks in the E map, which is the 
basis of the Sayre-Hughes equation, is replaced in the 
new equations by the requirement of equal peaks in the 
modified Patterson map which can, in favourable 
circumstances, preserve much of the structural infor- 
mation of the original Patterson. This suggests that the 
new equations, as well as being less dependent on the 
assumption of equal atoms, may be better related to the 
structural information which is contained in the 
Patterson function and expressed in the X(H). Also it 
will be seen that because each equation of the form (4), 
or the alternative form (6), is identified by a pair of 
labels h I and h 2 while each Sayre equation only has a 
single label, the number of the new equations of either 
form which are available for a given set of reciprocal 
vectors is potentially greater than the number of Sayre 
equations. 

Setting up a linear system 

In an attempt to understand the significance of (6) as 
a possible aid to phase determination, the problems of 
constructing a system of such equations and finding 
solutions for the cosines will be considered; but, first, a 
formal analogy with Sayre's equation is drawn. 

Analogy with the Sayre-Hughes equation 

Let us assume that there are some coefficients C(H) 
and a constant Z such that 

Equation (4), which is the main equation of this paper, 
might in principle be used in various ways. In what 
follows, a system of equations obtained from the 
derived form (6) is solved for the cosines of triple phase 
invariants for some simple, one-dimensional, model 
structures. Notice that in (6), instead of treating the 
cosines as the linearly related variables, we can 
substitute 

T(h~,h2,h 3) = IEh, Eh, Eh31 COS(qTh, + ~tTh~ + q~3) (10) 

and find the T's as the solution of 

C(H) exp (--2n/H. r~,) = 2, (7) 
H 

for/z = 1, ..., N. Then, replacing h by h -  H in (1), 
multiplying by C(H) and summing over H, we have 

7 C(H) E(h- H) = ,;LE(h). (8) 
H 

But if we put C(H) = E(H), (7) requires that the 
structure has equal atoms, and (8) becomes the 
Sayre-Hughes equation (Sayre, 1952; Hughes, 1953), 
derived in a manner analogous to the derivation of (4). 

X(H) T(h I + H, h 2- H, h3)= AT(hl,h2,h3). (11) 
H 

The results presented in the next section were obtained 
by this method. It was found that solving for the T's 
gives marginally better values for the cosines than 
solving directly for the latter, which seems to be due to 
different least-squares weighting in the two schemes. 
However, the notation used in (6) is retained because it 
is more explicit. The fact that (11) can be solved for the 
T's gives an indication of the degree of structural 
information imparted to the equations in the X(H) 
coefficients. 
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For the following calculations on one-dimensional 
structures, the reciprocal vectors in (6) become scalars 
and the summation over H is terminated at some limit 
M; (6) then becomes 

M 

~. X(H)IE(h I + H) E(h 2 -  H) E(h3)l 
H = - - M  

x COS(~h, +~ + ~0h2-H + ~Ph3) 

=21E(hl)E(h2)E(h3)Icos(~Ph,+ ¢Ph2+ ¢Ph). (12) 

The right-hand side of (12) can be combined with the 
term for H = 0 on the left and, since the cosines for 
H = - h ~  and H =  h 2 are equal to unity, the corre- 
sponding terms in the summation can be taken to the 
right-hand side as known. Repetition of this for all 
combinations h~, h 2 consistent with the limit M 
produces a system of non-homogeneous linear 
equations for the unknown cosines. If only terms for 
H > 0 needed to be considered, all the E's in the system 
would belong to the set {E(j): j = - M , . . . , M }  and 
there would be, at least formally, more equations than 
unknowns. Unfortunately, the terms for H < 0 must be 
included because the X(H)  are assumed to be the 
Fourier coefficients of a modified Patterson function. 
This generates too many unknowns for direct solution 
to be possible and, in general, approximations are 
required. It should be noted that the generation of 
additional unknowns by the necessary inclusion of 
negative indices in the summation also applies to 
Sayre's equation. 

There is a very particular situation in which it is 
possible to close the system of equations given by (12) 
(i.e. not to have more unknowns than equations) while 
keeping the equations exact; and this is when all the 
fractional atomic coordinates are multiples of 1/2M so 
that the E's are periodic with period 2M. Under the 
same circumstances, Sayre's equation also is finite and 
exact; that is 

M 

~ IE(H)E(h-H)E(--h)Icos( tPn + ~Ph-n + ~P-h) 
H = - M  

=21E(h)l 2, (13) 

for h =  1, ..., M. But this system of M Sayre's 
equations is not sufficient to solve for the cosines. 

In the following examples, we first consider a 
structure whose fractional atomic coordinates are 
multiples of 1/2M and solve for the cosines of all the 
triple phase invariants with non-zero moduli. Clearly, 
this cannot provide a practical means of phase 
calculation, firstly because the E's are not periodic in 
general and, secondly, because there would be too 
many unknowns for any structure not trivially small: 
but the calculations are intended to give a better 
understanding of the new equations. We then consider 
a one-dimensional structure without the above- 
mentioned restrictions on its atomic positions. In that 

case, estimation of a number of cosine invariants is 
rendered feasible on the basis of two different approxi- 
mations for the remaining unknowns. In the first 
approximation, some terms are simply omitted from the 
equations; and in the second some cosines are replaced 
by their expectation values derived from the Cochran 
(19 55) distribution. 

Examples 

A computer program for small one-dimensional struc- 
tures calculates the X(H) to be used in (12) as the 
Fourier coefficients of a modified Patterson function 
whose multiple peaks have been reduced approxi- 
mately to the height, 2, of a single peak. The program 
then sets up the system of equations according to the 
various conditions indicated in the last section and 
computes the unknown cosines as the least-squares 
solution for the overdetermined system. Results are 
presented for two structures, each with five equal 
atoms. In the first example, the fractional atomic 
coordinates are multiples of 1/2M so that the equations 
are complete and exact; but this restriction is removed 
in the second example. 

Example 1. Fractional atomic coordinates 0.10, 
0.25, 0.40, 0.55, 0-70 and M- -  10. This structure is 
centrosymmetric and its Patterson function is ade- 
quately represented with only 20 intervals because of 
the exact multiple superposition of interatomic inter- 
vals. The complete system of equations contains only 
15 unknowns because E(4) = E(8) = E(12) = E(16) = 
0. An exact solution was obtained as shown in Table 1. 
Values for I tPh, + Oh, + ~0h, l obtained from the calculated 

Table 1. Calculated and true absolute values for the 
15 triple phase invariants of example 1 

This is effectively the complete set of invariants because all the rest 
have zero modulus. 

Indices of 
invariant I~0hl + tph2 + tPh~l 

h I h 2 h 3 IEn~ Eh2 Eh31 True Calculated 

- 2  1 1 0.268 180 180 
- 3  I 2 0.123 180 180 
- 6  1 5 0.451 180 180 
- 7  1 6 2.038 0 0 

- 1 0  l 9 0.111 180 180 
- 5  2 3 0.079 0 0 
- 7  2 5 0.500 0 0 
- 9  2 7 0.397 0 0 

- l l  2 9 0.070 180 180 
- 6  3 3 0.148 0 0 
- 9  3 6 0.164 180 180 

- 1 0  3 7 0.289 0 0 
- 1 0  5 5 0.089 0 0 
- l l  5 6 0.230 0 0 
-13  6 7 5.914 0 0 
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cosines are compared  with the true values obta ined solution for the rest is possible. Table 2 gives the 
directly from the atomic coordinates  with (1). solution for the largest 40 invariants after simply 

Example 2. Fract ional  atomic coordinates  0 .000,  omitt ing all triplets which involve an index h with 
0.171,  0.324,  0 .449,  0 .673 and M =  15. These  Ihl > 15. Table 3 gives the cor responding  solution 
coordinates  deviate f rom multiples of  1/2M by when the cosines involving an index h with 15 < 
amounts  of  up to half  an interval. The Pat terson I hl < 30 are given their expectat ion values derived 
function for this more  realistic model  is not  properly from the Cochran  distribution (Karle & Karle,  1966; 
resolved. It is not  possible to find X ( H )  which satisfy Germain ,  Main & Woolfson,  1970). 
(3) exactly and therefore all the equat ions are only After eliminating the triplets which involve an index 
approximate.  An  additional problem is that  the with Ihl > 15, the total remaining number  of  unknown  
complete  system involves more  unknowns  than triplets is 56, and the solution for this system has a 
equat ions (for reasons explained in the last s ec t ion )and  large overall error while the errors for the largest 
some of  the unknowns  have to be given values before invariants are much  smaller. As the number  of  

unknowns  is reduced by removing invariants  with the 
smallest moduli,  the overall error decreases while the 

Table 2. Calculated and true absolute values for  the smaller errors for the largest invariants remain  fairly 
40 triple phase invariants corresponding to the largest 

40 values for  I Eh~ Eh~ Eh~ I in example 2 Table 3. Results corresponding to those o f  Table 2 
All triplets involving an index h with Ihl > 15 have simply been when the triplets involving an index h with 15 < Ihl < 

omitted from the calculation. 30 are estimated according to the Cochran distribution 

Indices of Indices of 
invariant I cPh~ + ¢Ph2 + ~Ph31 invariant I cp~-I- ~Ph2-I- cph3l 
h~ h 2 h 3 IEh~Eh2Eh3i True Calculated h~ h 2 h 3 IEh~Eh2Eh31 True Calculated 

- 4  1 3 0.330 144 180 - 4  1 3 0.330 144 180 
-6  1 5 0.155 169 84 -6  1 5 0.155 169 0 
- 7  1 6 0.980 46 41 -7  1 6 0.980 46 26 
-8  1 7 0.567 16 16 -8  1 7 0.567 16 21 
-9  1 8 0.671 78 94 -9  1 8 0.671 78 83 

-10 1 9 0.301 146 180 -10 1 9 0.301 146 180 
-12 1 11 0.422 49 180 -12 1 11 0.422 49 98 
-13 1 12 0.639 120 89 -13 1 12 0.639 120 103 
-14 1 13 0.569 25 72 -14 1 13 0.569 25 44 
-15 1 14 0.640 69 82 -15 1 14 0.640 69 82 

-6  2 4 0.169 2 0 --6 2 4 0.169 2 0 
-8  2 6 0.192 115 0 -8  2 6 0.192 115 0 
-9  2 7 0.164 122 180 -9  2 7 0.164 122 97 

-14 212 0.191 49 180 -14 212 0.191 49 66 
-6  3 3 0.802 66 0 -6  3 3 0.802 66 0 
-7  3 4 0.618 104 144 -7  3 4 0.618 104 139 
-9  3 6 1.435 15 0 -9  3 6 1.435 15 0 

-10 3 7 0.315 177 180 - i 0  3 7 0.315 177 180 
-11 3 8 0.376 119 180 -11 3 8 0.376 119 180 
-12 3 9 1.153 8 25 -12 3 9 1.153 8 0 
-13 3 10 0.256 86 180 -13 3 10 0.256 86 180 
-14 3 11 0.465 153 180 -14 3 11 0.465 153 146 
-15 3 12 0.890 89 69 -15 3 12 0.890 89 27 
- 8  4 4 0.659 23 46 - 8  4 4 0.659 23 33 
-9  4 5 0.175 32 0 -9  4 5 0.175 32 32 

-10 4 6 0.581 12 128 -10 4 6 0.581 12 73 
-11 4 7 0.501 9 96 -11 4 7 0.501 9 84 
-12 4 8 1.040 74 57 -12 4 8 1.040 74 66 
-13 4 9 0.898 89 83 -13 4 9 0.898 89 89 
-14 410 0.416 33 0 -14 410 0.416 33 47 
-15 411 0.458 78 87 -15 411 0.458 78 98 
-11 5 6 0.155 77 180 -11 5 6 0.155 77 180 
-12 5 7 0.233 80 157 -12 5 7 0.233 80 72 
-14 5 9 0.246 91 180 -14 5 9 0.246 91 129 
-12 6 6 3.525 43 21 -12 6 6 3.525 43 0 
-13 6 7 1-490 31 0 -13 6 7 1-490 31 0 
-14 6 8 1.819 22 0 -14 6 8 1.819 22 0 
-15 6 9 1.983 31 0 -15 6 9 1.983 31 0 
-14 7 7 1.314 40 28 -14 7 7 1.314 40 44 
-15 7 8 0.970 93 77 -15 7 8 0.970 93 63 
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constant. This is shown in Figs. 1 and 2 respectively for 
the two different methods of approximating invariants 
involving I hl > 15. The ordinate, D, in these figures is 
the root-mean-square difference (r.m.s.d.) in degrees 
between the true values for I~h ' 4- ~h2 4- ~h l  and the 
values obtained from the calculated cosines; the 
abscissa, R, is the number of unknowns of smallest 
modulus which have been removed from the system. In 
each figure, the upper plot is the overall r.m.s.d, and the 
lower plot is the r.m.s.d, for the ten invariants with the 
largest moduli. The results given in Tables 2 and 3 
correspond to the points R = 16 in the figures. 

Note that for both examples the number of cosines 
calculated is greater than the maximum number, M, of 
Sayre equations available for the same complete set of 
indices. 

D 9O' 

\ 

0 ° z I ~5 I 215 A I R 
0 S 10 I 20 3 0 3 5 

Fig. 1. Errors for example 2 when all invariants involving an index 
h with Ihf > 15 are omitted from the system which then has a 
total of 56 unknowns. D is the root-mean-square difference in 
degrees between the calculated and true absolute values of triple 
phase invariants and R is the number of unknown invariants 
successively removed in order of increasing modulus. The upper 
plot is the r.m.s.d, for the (56-R) calculated triple phase angles; 
the lower plot is the r.m.s.d, for the ten with largest moduli. 

D 9 0 ' ~  

60' 

O" I I I I R 
0 5 l0 15 210 215 3113 35 

Fig. 2. Errors for example 2 when invariants involving an index h 
with 15 < Ihl < 30 are estimated according to the Cochran 
distribution. Otherwise as for Fig. 1. 

Conclusion 

The new relationship between products of E's ,  which is 
derived from a Patterson function modified so that its 
values at interatomic vectors are made as nearly equal 
as possible, is expressed in somewhat different forms in 
(4), (6) and (9). It is clear that, at least formally, the 
relationship provides a greater number of equations for 
a given number of triple products than the equivalent 
system of Sayre's equations and the calculations 
reported in this paper verify that in idealized circum- 
stances the new equation determines the cosines of a 
number of triple phase invariants which is greater than 
the number of Sayre's equations. The calculations also 
show that the new equations produce reasonable 
phases for the invariants with large moduli even when 
overall errors are large and when many of the 
unknowns have been eliminated on the basis of 
approximations of arguable validity. It should also be 
noted that for example 2 the values of the modified 
Patterson function at interatomic vectors, which are 
supposed to be equal in order to satisfy (3), had a 
relative standard deviation of about 20%. This suggests 
that the equations are not critically sensitive to errors in 
the X ( H )  coefficients. 

Clearly it is impractical to think of solving a system 
of equations for the large number of cosine invariants 
associated with a real structure having more than just a 
few atoms but the principle that the new relationship 
provides a greater overdetermination of phases than 
Sayre's equation would seem to be important. This idea 
would, of course, have its ultimate test in the solution of 
real structures. Work towards this is in progress. 
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